Litter Decomposition in a Semiarid Dune Grassland: Neutral Effect of Water Supply and Inhibitory Effect of Nitrogen Addition
نویسندگان
چکیده
BACKGROUND The decomposition of plant material in arid ecosystems is considered to be substantially controlled by water and N availability. The responses of litter decomposition to external N and water, however, remain controversial, and the interactive effects of supplementary N and water also have been largely unexamined. METHODOLOGY/PRINCIPAL FINDINGS A 3.5-year field experiment with supplementary nitrogen and water was conducted to assess the effects of N and water addition on mass loss and nitrogen release in leaves and fine roots of three dominant plant species (i.e., Artemisia halondendron, Setaria viridis, and Phragmites australis) with contrasting substrate chemistry (e.g. N concentration, lignin content in this study) in a desertified dune grassland of Inner Mongolia, China. The treatments included N addition, water addition, combination of N and water, and an untreated control. The decomposition rate in both leaves and roots was related to the initial litter N and lignin concentrations of the three species. However, litter quality did not explain the slower mass loss in roots than in leaves in the present study, and thus warrant further research. Nitrogen addition, either alone or in combination with water, significantly inhibited dry mass loss and N release in the leaves and roots of the three species, whereas water input had little effect on the decomposition of leaf litter and fine roots, suggesting that there was no interactive effect of supplementary N and water on litter decomposition in this system. Furthermore, our results clearly indicate that the inhibitory effects of external N on dry mass loss and nitrogen release are relatively strong in high-lignin litter compared with low-lignin litter. CONCLUSION/SIGNIFICANCE These findings suggest that increasing precipitation hardly facilitates ecosystem carbon turnover but atmospheric N deposition can enhance carbon sequestration and nitrogen retention in desertified dune grasslands of northern China. Additionally, litter quality of plant species should be considered when modelling the carbon cycle and nutrient dynamics of this system.
منابع مشابه
Long‐term antagonistic effect of increased precipitation and nitrogen addition on soil respiration in a semiarid steppe
Changes in water and nitrogen (N) availability due to climate change and atmospheric N deposition could have significant effects on soil respiration, a major pathway of carbon (C) loss from terrestrial ecosystems. A manipulative experiment simulating increased precipitation and atmospheric N deposition has been conducted for 9 years (2005-2013) in a semiarid grassland in Mongolian Plateau, Chin...
متن کاملWarming and Nitrogen Addition Increase Litter Decomposition in a Temperate Meadow Ecosystem
BACKGROUND Litter decomposition greatly influences soil structure, nutrient content and carbon sequestration, but how litter decomposition is affected by climate change is still not well understood. METHODOLOGY/PRINCIPAL FINDINGS A field experiment with increased temperature and nitrogen (N) addition was established in April 2007 to examine the effects of experimental warming, N addition and ...
متن کاملUnderstanding litter decomposition in semiarid ecosystems: linking leaf traits, UV exposure and rainfall variability
Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate...
متن کاملInterrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland.
Encroachment of woody plants into grasslands, and subsequent brush management, are among the most prominent changes to occur in arid and semiarid systems over the past century. Despite the resulting widespread changes in landcover, substantial uncertainty about the biogeochemical impacts of woody proliferation and brush management exists. We explored the role of shrub encroachment and brush man...
متن کاملPhytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy.
Litter decomposition provides nutrients that sustain ecosystem productivity, but litter may also hamper root proliferation. The objectives of this work were to assess the inhibitory effect of litter decomposition on seedling growth and root proliferation; to study the role of nutrient immobilization and phytotoxicity; and to characterize decomposing litter by (13)C NMR spectroscopy. A litter-ba...
متن کامل